Скорость звука в воздухе зависимость

Скорость звука в воздухе

Для многих даже спустя годы после окончания школы остается неизвестным, какова же на самом деле скорость звука в воздухе. Кто-то невнимательно слушал преподавателя, а кто-то просто не до конца понял излагаемый материал. Что ж, быть может, настало время восполнить этот пробел в знаниях. Сегодня мы не просто укажем «сухие» цифры, а поясним сам механизм, определяющий скорость звука в воздухе.

Как известно, воздух представляет собой совокупность различных газов. Немногим более 78% приходится на азот, почти 21% занимает кислород, оставшаяся часть представлена углекислым и инертными газами. Следовательно, речь пойдет о скорости распространения звука в газовой среде.

Сначала давайте определимся, что такое звук. Наверняка многие слышали высказывание «звуковые волны» или «звуковые колебания». Действительно, например, диффузор звуковоспроизводящей колонки колеблется с определенной частотой, которая классифицируется слуховым аппаратом человека как звук. Один из законов физики гласит, что давление в газах и жидкостях распространяется без изменения во всех направлениях. Отсюда следует, что в идеальных условиях скорость звука в газах равномерна. Разумеется, в действительности имеет место ее естественное затухание. Нужно запомнить эту особенность, так как именно она объясняет, почему скорость может изменяться. Но это мы немного отвлеклись от главной темы. Итак, если звук – это колебания, то что именно колеблется?

Любой газ – это совокупность атомов определенной конфигурации. В отличие от твердых тел, между атомами в них относительно большое расстояние (по сравнению, например, с кристаллической решеткой металлов). Можно привести аналогию с горошинами, распределенными по емкости с желеобразной массой. Источник звуковых колебаний сообщает импульс движения ближайшим атомам газа. Они в свою очередь, подобно шарам на бильярдном столе, «ударяют» по соседним, и процесс повторяется. Скорость звука в воздухе как раз и определяет интенсивность импульса-первопричины. Но это лишь одна составляющая. Чем плотнее расположены атомы вещества, тем выше скорость распространения звука в нем. К примеру, скорость звука в воздухе почти в 10 раз меньше, чем в монолитном граните. Это очень легко понять: чтобы атом в газе мог «долететь» до соседнего и передать ему энергию импульса, ему необходимо преодолеть определенное расстояние.

Следствие: с увеличением температуры скорость распространения волн повышается. Несмотря на тепловое расширение, собственная скорость атомов выше, они хаотично двигаются и чаще соударяются. Также верно, что сжатый газ проводит звук намного быстрее, но чемпионом все-таки является сжиженное агрегатное состояние. В расчетах скорости звука в газах учитываются начальная плотность, сжимаемость, температура и коэффициент (газовая постоянная). Собственно, все это следует из вышесказанного.

Все-таки какова скорость звука в воздухе? Многие уже догадались, что невозможно дать однозначный ответ. Приведем лишь некоторые основные данные:

– при нуле градусов Цельсия на нулевой точке (уровень моря) скорость звука составляет около 331 м/с;

– снизив температуру до – 20 градусов Цельсия, можно «замедлить» звуковые волны до 319 м/с, так как изначально атомы в пространстве движутся медленнее;

– повышение же ее до 500 градусов ускоряет распространение звука почти в полтора раза – до 550 м/с.

Однако приведенные данные ориентировочны, так как кроме температуры на способность газов проводить звук влияет также давление, конфигурация пространства (помещение с предметами или открытая площадь), собственная подвижность и т.д.

В настоящее время свойство атмосферы проводить звук активно исследуется. К примеру, один из проектов позволяет посредством регистрации отраженного звукового сигнала (эха) определять температуру слоев воздуха.

Датчики, приборы
промышленной безопасности.
Автоматизация
производственных процессов.

ГлавАвтоматика > Статьи > Ультразвуковые датчики. Особенности применения и выбора

Ультразвуковые датчики. Особенности применения и выбора

При выборе ультразвукового датчика необходимо учитывать особенности окружающей среды и характер ее влияния на измерения и работоспособность измерительных приборов.

Введение.

Ультразвуковые датчики широко используются в качестве датчиков приближения (proximity), для дистанционного обнаружении различных объектов, измерения расстояний. Как правило, датчики действуют путем посылки короткого цуга ультразвуковых волн в направлении объекта обнаружения, который, отразившись от поверхности объекта, возвращается обратно. Затем, электронная схема производит расчет времени между моментом посылки сигнала и моментом приема отраженного эха. Расстояние является производной величиной от времени и скорости звука в окружающей среде.

В настоящее время на рынке представлен широкий выбор ультразвуковых датчиков в различных конструктивных исполнениях, действующих в различных акустических частотах. Палитра поведения различных акустических частот в схожих условиях окружающей среды не является одинаковой. В большинстве случаев не составит труда, руководствуясь характеристиками, данными производителем, выбрать подходящий датчик для своей задачи. Но в случаях, когда в работе устройств появляются сбои или возникают существенные ошибки в измерениях, необходимо произвести более тщательную оценку факторов влияния, таких как:

  • Изменения скорости звука в зависимости от температуры и свойств окружающей среды (в основном, воздуха), — как данные изменения влияют на точность измерений и разрешающую способность датчиков;
  • Изменения длины звуковой волны в зависимости от скорости и частоты звука, — как данные изменения влияют на точность измерений, разрешающую способность, минимальный размер объекта, минимальное и максимальное расстояние до объекта;
  • Изменения величины затухания в зависимости от частоты звука и влажности, — как данные изменения влияют на максимальное расстояние чувствительности датчиков в воздухе;
  • Изменения уровня внешних шумов в зависимости от частоты, — как данные изменения влияют на максимальное расстояние чувствительности и размеры объекта обнаружения;
  • Изменения амплитуды отраженного эха в зависимости от расстояния до объекта, размеров и геометрии поверхности, — как данные изменения влияют на расстояние чувствительности.

Ультразвуковые датчики. Особенности применения и выбора.

2. Ультразвук. Основные свойства.

Ультразвук – это звуковые колебания, не воспринимаемые человеческим слухом, частотой свыше 20кГц. Роль микрофонов и громкоговорителей в сфере ультразвука выполняют устройства, называемые трансдукторами. Большинство ультразвуковых датчиков используют один трансдуктор как для передачи, так и для приема сигналов. В датчиках приближения и измерения расстояния, предназначенных для автоматизации технологических процессов в качестве трансдукторов применяются пьезоэлектрические преобразователи (далее — пьезоэлементы) с рабочей частотой от 40 до 400кГц.

3. Скорость звука в воздухе. Зависимость от температуры.

Ультразвуковые датчики действуют по принципу эхолокации – расстояние до объекта рассчитывается на основании измерения промежутка времени между моментами посылки и приема звукового импульса и скорости звука в среде.

Для газов формула скорости звука (c) выглядит так:

c=√( γ k T/ m)= √( γ R T/ M)= √( γ R(t+273,15)/M), (1) где γ — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; k — постоянная Больцмана; R — универсальная газовая постоянная; T — абсолютная температура в кельвинах; t — температура в градусах Цельсия; m — молекулярная масса; M — молярная масса. По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.

Скорость звука. Скорость распространения звука в воздухе.

В статье рассмотрены характеристика звуковых явлений в атмосфере: скорость распространения звука в воздухе, влияние на распространение звука ветра, тумана.
Продольные колебания частиц материи, распространяясь по материальной среде (по воздуху, воде и твердым телам) и достигнув уха человека, вызывают ощущения, называемые звуком.
В атмосферном воздухе всегда находятся звуковые волны различной частоты и силы. Часть этих волн создается искусственно человеком, а часть звуков имеет метеорологическое происхождение.
К звукам метеорологического происхождения относятся гром, завывание ветра, гудение проводов, шум и шелест деревьев, «голос» моря, звуки при падении на земную поверхность твердых и жидких осадков, звуки прибоя у берегов морей и озер и другие.
На скорость распространения звука в атмосфере влияет температура и влажность воздуха, а также ветер (направление и его сила). В среднем скорость звука в атмосфере равна 333 м/с. С увеличением температуры воздуха скорость звука несколько возрастает. Изменение абсолютной влажности воздуха оказывает меньшее влияние на скорость звука.
Скорость звука в воздухе определяется формулой Лапласа:

(1),
где р — давление; ? — плотность воздуха; c? — теплоемкость воздуха при постоянном давлении; cp — теплоемкость воздуха при постоянном объеме.
Используя уравнение состояния газа, можно получить ряд зависимостей скорости звука от метеорологических параметров.
Скорость звука в сухом воздухе определяется по формуле:
с0 = 20,1 ?Т м/с, (2)
а во влажном воздухе:
с0 = 20,1 ?ТВ м/с, (3)
где ТВ = так называемая акустическая виртуальная температура, которая определяется по формуле ТВ = Т (1+ 0,275 е/р).
При изменении температуры воздуха на 1° скорость звука изменяется на 0,61 м/с. Скорость звука зависит от величины отношения е/р (отношение влажности к давлению), но эта зависимость мала, и, например, при упругости водяного пара менее 7мм пренебрежение ею дает ошибку в скорости звука, не превышающую 0,5 м/сек.
При нормальном давлении и Т = 0 °С скорость звука в сухом воздухе равна 333 м/сек. Во влажном воздухе скорость звука может быть определена по формуле:
с = 333 + 0,6t + 0,07е (4)
В диапазоне температур (t) от -20° до +30° эта формула дает ошибку в скорости звука не более ± 0,5 м/сек. Из приведенных формул видно, что скорость звука повышается с повышением температуры и влажности воздуха.
Ветер оказывает сильное влияние: скорость звука по направлению движения ветра увеличивается, против ветра — уменьшается. Наличие ветра в атмосфере вызывает дрейф звуковой волны, что создает впечатление смещения источника звука. Скорость звука в этом случае (c1) определится выражением:
c1 = c + U cos ?, (1)
где U-скорость ветра; ? — угол между направлением ветра в точке наблюдения и наблюдаемым направлением прихода звука.
Знание величины скорости распространения звука в атмосфере имеет большое значение при решении ряда задач по изучению верхних слоев атмосферы акустическим методом. Пользуясь средней скоростью звука в атмосфере, можно узнать расстояние от своего местонахождения до места возникновения грома. Для этого нужно определить число секунд между видимой вспышкой молнии и моментом прихода звука грома. Затем надо умножить среднее значение скорости звука в атмосфере — 333 м/сек. на полученное число секунд.

Скорость звука в воздухе зависимость

Скорость звука V в среде зависит от ее сжимаемости, т.е. упругости и в общем случае определяется выражением:

где Е — модуль Юнга, =1/Е — коэффициент объемного сжатия, р — давление, — плотность среды.

Так, по (8.19) V (меди) = 3910 м/с, V (алюминия) = 4880 м/с, V (воды) = 1430 м/с.

Для газов при условии адиабатичности процесса имеем:

где и — теплоемкости при постоянном давлении и объеме (=1,401).

Подставляя , получим для любого заданного газа

где Rу — универсальная газовая постоянная, — относительная молекулярная масса газа.

Для сухого воздуха = 28,97 и формула (8.21) принимает вид:

т.е. скорость звука в сухом воздухе зависит только от температуры.

Так, расчеты по (8.22) дают при Т = 273?К (0?С) и Т = 288?К (15?С) скорости звука в сухом воздухе соответственно равными 331 и 340 м/с.

Из (8.22) следует, что при изменении температуры на 1?К скорость звука в воздухе меняется на 0,6 м/с и составит при -50?С V = 300 м/с, а при +50?С V = 360 м/с.

Влажность мало влияет на скорость звука, изменяя ее в пределах ±1 м/с. Во влажном воздухе скорость больше и может быть рассчитана по выражению

где е — парциальное давление водяного пара.

Все сказанное относится к обычным звуковым волнам с малым перепадом давления в областях сжатия и разрежения. Если перепад давления очень велик (взрыв, выстрел из орудия, реактивный самолет и т.д.), то в этих областях возникают и большие перепады температур. В результате рождаются ударные волны, движущиеся быстрее скорости звука. Значения , и V м/c для этих случаев видны из таблички.

В авиационной и космической технике используется число Маха (Ма), равное отношению

Ма = V летат.аппарата / V звука (8.24)

Каждый летательный аппарат рассчитан на предельно допустимое для него Ма. По мере удаления ударной волны от ее источника и уменьшаются, соответственно падает скорость волны, и она выражается в обычную звуковую волну.

Влияние ветра на скорость звука

В неподвижном воздухе звуковая волна от источника звука S распространяется с одинаковой скоростью V во все стороны (при условии изотермичности среды). При наличии ветра скорость звуковой волны в направлении наблюдателя надо рассматривать как определяемую векторной суммой ее скорости в неподвижном воздухе и скорости ветра с учетом положения наблюдателя.

Пусть источник звука находится в точке S, а наблюдатель в точке М. Вектор ветра имеет направление как показано на рис. 8.8, а ось хх параллельна . В момент времени t звук из S дойдет до наблюдателя М, пройдя путь SМ и имея скорость V c . Но за это же время t ветер «перенесет» центр возникших звуковых волн в точку SM , так что SSM = ct. Наблюдателю будет казаться, что по направлению звук пришел из центра SM.

Не трудно показать, что при V >> c справедливо соотношение

V c V + c соs (8.25)

где V c — скорость звука в направлении наблюдателя с учетом скорости ветра с, а угол — можно измерить, V — скорость ветра в неподвижном воздухе.

Аналогично, для оценки получим:

Таким образом, зная скорость ветра и измерив , по (8.25) можно достаточно оценить модуль скорости звуковой волны V c от источника S в направлении наблюдателя М. При этом истинное положение источника S можно найти по углу из (8.26) и учитывая, что

где знак «-» соответствует расположению S с наветренной стороны ( по отношению к наблюдателю М), а знак «+» с подветренной стороны.

Из (8.25) следует, что при = 0 (М находится точно на линии хх и S с наветренной стороны) влияние ветра на увеличение V c максимально, так что V c = V + c. При = 180 (S на хх и в подветренной стороне) имеет место максимальное уменьшение V c, так что V c = V — c. При = 90? и 270? ветер не оказывает влияния на модуль скорости V c (V c = V). Напротив, звуковая поправка на аберацию максимальна при = 90? и 270?, когда sin= c/ V, и минимальна при = 0 и 180?, когда sin= 0.

Какова скорость звука в воздухе?

Какова скорость звука в воздухе?

Все мы знаем, что воздух состоит:

Азот -около 78%,

Кислород- около 21%,

Аргон и прочие примеси около 1%

Так вот в азоте скорость звука около 334 м/с, а в кислороде 316 м/с и нетрудно понять, что скорость звука в воздухе будет находиться где-то между этими цифрами.

Так вот при параметрах в 0 градусов и 101325 Па -скорость звука в воздухе будет около 331 м/с

Скорость звука в неподвижном воздухе (безветрие) составляет 331 метр в секунду. Современная авиация достигла таких высот в техническом плане, что аппараты превышают скорость звука в четыре и более раза. А в разработке сегодня находятся ракеты способные в будущем превышать скорость звука в десять-двенадцать раз!

Скорость звука в воздухе равна приблизительно 1200 км/ч.

Приблизительно, потому что скорость звука зависит от ряда физических (температура, плотность).

Эта скорость согласно критерию подобия в механике равна 1 маху.

Интересный вопрос, на который не так просто дать ответ, как кажется. Скорость звука в воздухе зависит от температуры воздуха и с увеличением на 1 градус Цельсия скорость увеличивается на 0,59 м/с. Итак при 0 градусов скорость воздуха равна 331,5м/с, при +30 — 348,9 м/с, при минус 20 — 318,8 м/с.

В качестве справочного значения скорости звука в воздухе можно привести величину 331 метр в секунду или 1191 километр в час. Такое значение скорость звука имеет при нормальном давлении воздуха и температуре 0 градусов Цельсия. Однако скорость звука может иметь и другие значения, в зависимости от температуры воздуха и давления. Так в космосе где давление воздуха отсутствует скорость звука равна 0, ведь звуковым волнам там просто не в чем распространяться. На практике часто приводят цифру 343.3 метра в секунду — это скорость звука при 20 градусах Цельсия. При 100 градусах она составит уже 387 метров в секунду, а при -50 градусах всего 299 метров в секунду.

Скорость звука в воздухе при нормальных условиях около 335 м. в сек. Если мы слышим какой-либо звук, значит, поблизости должен находиться вибрирующий предмет, который колеблется. Звуки исходят от вибрирующих предметов.

Нетрудно заметить, что разные авторы ответов в этом вопросе приводят разные цифры. Почему же это происходит? Потому что скорость звука в воздухе — величина непостоянная и зависит от температуры среды. Если температура 0 градусов по Цельсию, то скорость звука будет составлять — около 335 м/с. Но с повышением температуры эта скорость будет увеличиваться. Поэтому приводят иногда цифры и 340 и 343 м/с.

Нельзя дать однозначный ответ на этот вопрос. Скорость звука в воздушной среде зависит от температуры воздуха. Ниже приведена таблица зависимости скорости воздуха от температуры.

Кроме того, скорость звука можно рассчитать подставив данный в формулу здесь

1224 км/ч или 343,3 м/с — такова скорость звука в воздухе.

Со скоростью звука не летает в небе и космосе ни один современный летательный аппарат, но по рассказам одного лтчика, они видели такой летательный аппарат, который исчез с поля зрения со скорость звука — они говорят, что это было НЛО.

Приблизительно скорость звука в воздухе около 335 м. в сек. конечно данные только приблизительные так как, определить скорость точно невозможно, многие факторы влияют на данные показатели погода, солнце, плотность воздуха и.т.д.

Скорость звука в воздухе при нормальных условиях составляет около 343,3 метра в секунду. Если перевести это значение в километры в час, то получаем, что скорость звука в воздухе равна примерно 1224 километрам в час. А вот в воде скорость звука больше, чем в воздухе, более,чем в 4 раза. А вот в твердом теле скорость звука еще больше и может составлять до 6 тысяч метров в секунду.

Что такое скорость звука?

Большинство людей прекрасно понимают, что такое звук. Он ассоциируется со слухом и связан с физиологическими и психологическими процессами. В головном мозге осуществляется переработка ощущений, которые поступают через органы слуха. Скорость звука зависит от многих факторов.

Звуки, различаемые людьми

В общем смысле слова звук – это физическое явление, которое вызывает воздействие на органы слуха. Он имеет вид продольных волн различной частоты. Люди могут слышать звук, частота которого колеблется в пределах 16-20000 Гц. Эти упругие продольные волны, которые распространяются не только в воздухе, но и в других средах, достигая уха человека, вызывают звуковые ощущения. Люди могут слышать далеко не все. Упругие волны частотой меньше 16 Гц называют инфразвуком, а выше 20000 Гц – ультразвуком. Их человеческое ухо не может слышать.

Характеристики звука

Различают две основные характеристики звука: громкость и высоту. Первая из них связана с интенсивностью упругой звуковой волны. Существует и другой важный показатель. Физической величиной, которая характеризует высоту, является частота колебаний упругой волны. При этом действует одно правило: чем она больше, тем звук выше, и наоборот. Еще одной важнейшей характеристикой является скорость звука. В разных средах она бывает различной. Она представляет собой скорость распространения упругих звуковых волн. В газовой среде этот показатель будет меньше, чем в жидкостях. Скорость звука в твердых телах самая высокая. При этом для волн продольных она всегда больше, чем для поперечных.

Скорость распространения звуковых волн

Этот показатель зависит от плотности среды и ее упругости. В газовых средах на него действует температура вещества. Как правило, скорость звука не зависит от амплитуды и частоты волны. В редких случаях, когда эти характеристики оказывают влияние, говорят о так называемой дисперсии. Скорость звука в парах или газах колеблется в пределах 150-1000 м/с. В жидких средах она составляет уже 750-2000 м/с, а в твердых материалах – 2000-6500 м/с. В нормальных условиях скорость звука в воздухе достигает 331 м/с. В обычной воде – 1500 м/с.

Скорость звуковых волн в разных химических средах

Скорость распространения звука в разных химических средах неодинакова. Так, в азоте она составляет 334 м/с, в воздухе – 331, в ацетилене – 327, в аммиаке – 415, в водороде – 1284, в метане – 430, в кислороде – 316, в гелии – 965, в угарном газе – 338, в углекислоте – 259, в хлоре – 206 м/с. Скорость звуковой волны в газообразных средах возрастает с повышением температуры (Т) и давления. В жидкостях она чаще всего уменьшается при увеличении Т на несколько метров за секунду. Скорость звука (м/с) в жидких средах (при температуре 20°С):

• этиловый спирт – 1180;

• углерод четыреххлористый – 920;

Из вышеуказанного правила исключением является только вода, в которой с ростом температуры увеличивается и скорость звука. Своего максимума она достигает при нагревании этой жидкости до 74°С. При дальнейшем повышении температуры скорость звука уменьшается. При увеличении давления она будет увеличиваться на 0,01%/1 Атм. В соленой морской воде с ростом температуры, глубины и солености будет повышаться и скорость звука. В других средах этот показатель изменяется по-разному. Так, в смеси жидкости и газа скорость звука зависит от концентрации ее составляющих. В изотопном твердом теле она определяется его плотностью и модулями упругости. В неограниченных плотных средах распространяются поперечные (сдвиговые) и продольные упругие волны. Скорость звука (м/с) в твердых веществах (продольной/поперечной волны):

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *